آزمایشگاه کنترل کیفی میکروبی شیمیایی

 
در شرکت سی‌گل پلاست با مدرنترین و به روز ترین وسایل آزمایشگاه و با کادری مجرب و تعلیم دیده محصولات را مورد آزمایش قرار داده ایم تا از هر لحاظ سلامت و کیفیت محصولات در بالاترین حد ممکن قرار گیرد .
 



خلاصه ای از مواد تشکلیل دهنده ظروف به این شکل میباشد:
پلی استایرن

ساختار پلی استایرن

از نظر شیمیایی، پلی استیرن یک هیدروکربن طویل زنجیر است که در آن مراکز متغیر کربنی به گروه‌های فنیل (نامی که به بنزن حلقه‌ای داده می‌شود) متصلند. فرمول شیمیایی پلی استایرن (n(C8H۸ می‌باشد؛ این ماده حاوی موله‌های عناصر شیمایی کربنی و هیدروژن می‌باشد.
ویژگی‌های ماده توسط جذب کوتاه مدت واندر والسی بین زنجیرهای پلیمری تعیین می‌شود. از آنجایی که مولکول‌ها هیدروکربن‌های بلند-زنجیری هستند که از هزاران اتم تشکیل می‌شوند، نیروی کششی کلی بین مولکول‌ها بزرگ می‌باشد. هنگام حرارت دادن (یا به سرعت بدشکل شدن به علت ترکیب با ویژگی‌های ویسکوالاستیک viscoelastic و عایق حرارتی) زنجیره‌ها سازگاری بیشتری بدست آورده و از کنار یکدیگر سر می‌خورند. این سستی بین مولکولی (در مقابل قدرت بالای بین مولکولی به علت استقامت هیدروکربنی) حالت انعطاف پذیری و کشسانی به این ماده می‌دهد. قابلیت سیستم برای بدشکل شدن آن در دمای بالاتر از دمای تبدیل شیشه‌ای اش، به پلی استرین (و بطورکلی پلیمرهای نرمش پذیر در مقابل حرارت) این امکان را می‌دهد تا هنگام حرارت دادن به راحتی نرم شده و به شکل‌های گوناکون درآید.

تاریخچه

اولین بار پلی استایرن توسط ادوارد سایمون در سال ۱۸۳۹ کشف شد که خودش نمی‌دانست چه مادهٔ با ارزشی کشف کرده. تهیه تجاری منومر استایرن و پلیمریزاسیون آن به سال ۱۹۳۴ بر می‌گردد که کمپانی "داو" توانست استایرن را از فراورده‌های نفتی سنتز نماید و سپس آن را پلیمریزه کند. در همان زمان مشابه این فرایند مراحل تکمیلی خود را در آلمان غربی می گذراند. تجربیات به دست آمده از این محصول در زمان جنگ جهانی دوم موجب گردید تا در سال‌های بعد از جنگ، پلی استایرن نه تنها به عنوان یک عایق الکتریسیته گران قیمت شناخته نشود، بلکه به عنوان یک پلاستیک گرمانرم، ارزان و با خواص خوب معرفی شود. با طی گذر زمان و با انتشار تئوری‌های مختلف (از جمله تئوری هرمان اشتاودینگر در سال ۱۹۲۲ در مورد پلیمر)، در نهایت شرکت BASF در ابتدای سال ۱۹۵۰ یک فرایند دو مرحله‌ای برای تولید فوم پلی استایرن را گسترش داد. در این فرایند مرحله اول شامل تهیه دانه‌های حاوی توزیع یکنواخت عامل پف زا توسط روش پلیمریزاسیون سوسپانسیونی مونومر استایرن بوده که در مرحله دوم این ماده در داخل یک قالب فرایند می‌گردد. سهولت تولید محصول به هر شکل و اندازه از مزایای این روش بوده که باعث توسعه آن شد. این ماده اولین بار در سال ۱۹۵۰ تولید گردید.

پلی استایرن معمولی

پلی استایرینی با نام اختصاری GPPS که جهت مصارف عمومی مورد استفاده قرار می‌گیرد، معمولاً بایستی دارای خواص نظیر مقاومت خوب در برابر حرارت، قدرت ضربه پذیری مناسب و سیالیت خوبی در هنگام فرایند باشد. این پلی استایرنها خواص دی الکتریکی و استحکام بالایی دارند به همین دلیل در مصارف الکتریکی کاربرد بالایی دارند. نام تجاری این محصول در بازار ایران کریستال می‌باشد.

موارد مصرف

برای تولید ظروف یک بارمصرف، وسایل الکترونیکی، بدنه ساعت، تلویزیون، رادیو، لوازم ورزشی، اسباب بازی، عایق برودتی دربدنه یخچال‌ها، فریزرها و وسایل خانگی
پلی استایرن مقاوماین نوع پلی استایرن با نام اختصاری high-impact polystyrene) HIPS) مقاوم به ضربه است و به همین دلیل در ساخت ظروف و بدنهٔ لوازم خانگی کاربرد دارد. نام تجاری این ماده در بازار ایران هایمپک می‌باشد.

موارد مصرف

برای تولید لوازم ورزشی، اسباب بازی، عایق برودتی دربدنه یخچال‌ها، فریزرها و وسایل خانگی
پلی استایرن انبساطی ( یونولیت)
این نوع پلی استیرن با نام اختصاری Expanded polystyrene) EPS) نوعی پلیمر سفید رنگ که به آنها یک عامل فوم کننده اضافه شده است. که در ایران با نام یونولیت شناخته می شود.

موارد مصرف

برای تولید بلوک‌های پلاستوفوم سقفی به منظور استفاده به عنوان عایق صوتی و حرارتی در ساختمان‌ها و مکان‌های مختلف.
عایق برودتی در سردخانه‌ها و یخچالهای صنعتی.
ساخت انواع فوم‌های بسته بندی و انواع یخدان و ترموس.
پلی اتیلن
پلی‌اتیلن‌ها خانواده‌ای از گرمانرمها می‌باشند که از طریق پلیمریزاسیون گاز اتیلن (C2H4) بدست می‌آیند. از طریق کاتالیست و روش پلیمریزاسیون این ماده می‌توان خواص مختلفی همچون چگالی، شاخص جریان مذاب (MFI)، بلورینگی، درجه شاخه‌ای و شبکه‌ای شدن، وزن مولکولی و توزیع وزن مولکولی را در آنها کنترل کرد. پلیمرهای با وزن مولکولی پائین را به عنوان روان‌کننده(Lubricant) به کار می‌برند. پلیمرهای با وزن مولکولی متوسط واکس‌هایی امتزاج پذیر (مخلوط پذیر) با پارافین می‌باشند و نهایتاً پلیمرهایی با وزن مولکولی بالاتر از ۶۰۰۰ در صنعت پلاستیک بیشترین حجم مصرف را به خود اختصاص می‌دهند. پلی اتیلن شامل ساختار بسیار ساده‌ای است، به طوری که ساده‌تر از تمام پلیمرهای تجاری می‌باشد. یک مولکول پلی اتیلن زنجیر بلندی از اتم‌های کربن است که به هر اتم کربن دو اتم هیدروژن چسبیده‌است.
گاهی اوقات به جای اتم‌های هیدروژن در مولکول(پلی اتیلن)، یک زنجیر بلند از اتیلن به اتم‌های کربن متصل می‌شود که به آنها پلی اتیلن شاخه‌ای یا پلی اتیلن سبک (LDPE) می‌گویند؛ چون چگالی آن به علت اشغال حجم بیشتر، کاهش یافته‌است. در این نوع پلی اتیلن مولکولهای اتیلن به شکل تصادفی به یکدیگر متصل می‌شوند و ریخت و شکل بسیار نامنظمی را ایجاد می‌کنند. چگالی آن بین ۹۱۰/۰ تا ۹۲۵/. است و تحت فشار و دمای بالا و اغلب با استفاده از پلیمریزاسیون رادیکال‌های آزاد وینیلی (Free radical polymerization) تولید می‌شود. البته برای تهیهٔ آن می‌توان از پلیمریزاسیون زیگلر ناتا (Ziegler-Natta polymerization)نیز استفاده کرد.
وقتی هیچ شاخه‌ای در مولکول وجود نداشته باشد آن را پلی اتیلن خطی می‌نامند. پلی اتیلن خطی سخت تر از پلی اتیلن شاخه‌ای است اما پلی اتیلن شاخه‌ای آسانتر و ارزانتر ساخته می‌شود. ریخت و شکل این پلیمر بسیار کریستالی شکل است. پلی اتیلن خطی محصول نرمالی با وزن مولکولی ۲۰۰۰۰۰-۵۰۰۰۰۰ است که آن را تحت فشار و دماهای نسبتاً پائین پلیمریزه می‌کنند. چگالی آن بین ۹۴۱/۰ تا ۹۶۵/۰ است و آن را بیشتر به وسیلهٔ فرایند مشکلی که پلیمریزاسیون زیگلر ناتا نامیده می‌شود، تهیه می‌کنند. شکل این پلی اتیلن را در تصویر بالا می‌توانید مشاهده کنید.
پلی اتیلنی نیز وجود دارد که چگالی آن مابین چگالی این دو پلیمر است یعنی در محدودهٔ ۹۲۶/۰ تا ۹۴۰/۰؛ و آن را پلی اتیلن نیمه سنگین یا پلی اتیلن متوسط می‌نامند.
پلی اتیلن با وزن مولکولی بین ۳ تا ۶ میلیون را پلی اتیلن با وزن مولکولی بسیار بالا یا UHMWPE می‌نامند و با پلیمریزاسیون کاتالیست متالوسن تولید می‌کنند. مادهٔ مزبور فرایند پذیری دشوارتری برخوردار بوده ولی خواص آن عالی است. هنگامی که از طریق تشعشع یا استفاده از مواد افزودنی شیمیایی، این پلیمر تماماً شبکه‌ای شود، پلی اتیلن یاد شده دیگر گرما نرم نخواهد بود. این ماده با پخت حین قالب گیری یا بعد از آن یک گرما سخت واقعی با استحکام کششی، خواص الکتریکی و استحکام ضربهٔ خوب در دامنهٔ وسیعی از دماها خواهد بود. از آن برای ساخت فیبرهای بسیار قوی استفاده می‌کنند تا جایگزین کولار (نوعی پلی آمید) در جلیقه‌های ضد گلوله کنند؛ و همچنین صفحات بزرگ آن را می‌توان به جای زمین‌های اسکیت یخی استفاده کرد.
به وسیلهٔ کوپلیمریزاسیون مونومراتیلن با یک مونومر آلکیل شاخه دار، کوپلیمری با شاخه‌های هیدروکربن کوتاه بدست می‌آید که آن را پلی اتیلن خطی با چگالی کم یا LLDPE می‌نامند و از آن اغلب برای ساخت اشیاءای شبیه فیلم‌های پلاستیکی (کسیه فریزر) استفاده می‌کنند.

پلی پروپیلن

پلی پروپیلن

پلی پروپیلن گسترش یافته یا EPP حباب یا لایه‌ای از پلی پروپیلن است که دارای ویژگی فشاری خوبی است که ناشی از سختی و سفتی پایین آن است و به آن اجازه می‌دهد که بعد از اعمال فشار به حالت اولیه خود برگردد و بطور گسترده‌ای در صنعت هواپیمایی و وسایل کنترل رادیویی بکار می‌رود که این ویژگی ناشی از قدرت جذب فشار است.

درباره پلی پروپیلن

نام این محصول پلی پروپیلن (PP) و فرمول شیمیایی آن –[CH2-CH(CH3)]n– می‌باشد. پلی پروپیلن یکی از پرمصرف‌ترین و اساسی‌ترین بسپارهای مورد استفاده در دنیا و بزرگ‌ترین مصرف‌کننده پروپیلن می‌باشد.
پلی پروپیلن از بسپارش پروپیلن در شرایط دما و فشار نسبتاً ملایم ودر حضور کاتالیست معروف زیگلر – ناتا انجام می‌شود. وجود این کاتالیزور، بسپاری به صورت ایزوتاکتیک را تشکیل می‌دهد که قادر به متبلور شدن تا حدود ۹۰ درصد می‌باشد.
پلی‌پروپیلن یک بسپار گرمانرم می‌باشد که در یک بازه گسترده از کاربردها شامل فیلم و ورق، قالب‌گیری دمشی، قالب‌گیری تزریقی، بسته‌بندی غذایی، نساجی، تجهیزات آزمایشگاهی و پزشکی، لوله، کاربردهای صنعتی و ساختمانی و اجزاء خودرو مورد استفاده قرار می‌گیرد. علاوه بر این، بسپار تولیدشده از تک‌پار پروپیلن به طور معمول در برابر حلال‌های شیمیایی، بازها و اسیدها مقاوم می‌باشد. کد مشخصه این بسپار می‌باشد.
مولکول پروپیلن دارای ساختار شیمیایی نامتقارن می‌باشد، از این رو فرایند بسپارش آن می‌تواند به سه نوع توالی در ساختار بسپار حاصل منتهی گردد. به دلیل اثرات ناشی از ممانعت فضایی گروه‌های متیل، توالی سر به دم دارای نظم ساختاری بالاتری نسبت به سایر انواع می‌باشد.
پلی پروپیلن دارای سه پیکربندی فضایی مختلف می‌باشد که عبارتند از ایزوتاکتیک (iPP)، سیندیوتاکتیک (sPP) و اتاکتیک (aPP). در نوع ایزوتاکتیک گروه‌های متیلی در یک طرف صفحه عبوری از زنجیر اصلی می‌باشند. در نوع سیندیوتاکتیک گروه‌های متیل به صورت یک در میان در دو طرف صفحه عبوری از زنجیر قرار می‌گیرند. در نوع اتاکتیک هم هیچ نوع نظم خاصی وجود ندارد.
یک کاتالیست زیگلر-ناتا قادر است که قرار گرفتن تک‌پارها را در یک آرایش‌یافتگی ویژه محدود سازد و تنها اجاره می‌دهد که تک‌پارها در جهت درست به زنجیر بسپاری اضافه شوند. اکثر پلی‌پروپیلن‌های معمول که با استفاده از کاتالیست‌های تیتانیوم کلراید (Ticl4) تولید می‌شوند، دارای درصد بالایی از پلی‌پروپیلن ایزوتاکتیک می‌باشند. به دلیل اینکه گروه‌های متیل در یک طرف قرار گرفته‌اند، بعضی ملکول‌ها تمایل دارند که به شکل مارپیچی دربیایند، این مارپیچ‌ها یک به یک در کنار هم قرار می‌گیرند و مقاومت پلی‌پروپیلن معمول را ایجاد می‌کنند.
iPP تجاری شده دارای خصوصیات متنوعی می‌باشد که موجبات استفاده گسترده آن را به خصوص در صنعت پلاستیک و الیاف فراهم آورده است. یکی از مهم‌ترین خصوصیات این ماده نسبت به بسپارهایی نظیر پلی آمیدها عدم جذب رطوبت در آن می‌باشد که آن را به عنوان گزینه‌ای مناسب برای بسیاری از کاربردها تبدیل کرده است. خصوصیات این ماده را می‌توان با انجام برخی اصلاحات بعدی بهبود داد. مهم‌ترین اصلاحاتی که در حال حاضر انجام می‌گیرد عبارتند از کنترل فرایند تخریب، شبکه‌ای کردن، عاملیت دار نمودن و شاخه دار کردن. ساختار مولکول پلی پروپیلن به دلیل ماهیت کاتالیست‌های زیگلر-ناتا خطی می‌باشد که موجب پایین بودن استحکام مذاب آن می‌گردد. پایین بودن استحکام مذاب سبب محدودیت کاربرد این بسپار در فرایندهایی نظیر قالب گیری دمشی و ترموفرمینگ می‌شود.

پلی پروپیلن در مقایسه با دیگر بسپارها مشخصات متمایز و برجسته‌ای دارد که عبارتند از:

قیمت نسبتاً ارزان تک‌پار پروپیلن در مقایسه با تک‌پارهای دیگر بسپارها
قیمت پایین PP در مقایسه با دیگر بسپارها
وزن مخصوص و سبک PP
انعطاف‌پذیری و طیف گسترده تولید PP با خصوصیات فیزیکی و شیمیایی متغیر
افزایش کاربردهای جدید و بهبود خواص رده‌های تولیدی جدید
افزایش کاربرد PP در وسایل و تجهیزات پزشکی و توسعه کاربردهای PP رده خاص
افزایش مصرف PP به صورت آلیاژ با دیگر بسپارها
جایگزینی با بسپارهایی مانند PS، PE و غیره


پلی اتیلن ترفتالات

پلی اتیلن ترفتالات

PET

پلی اتیلن ترفتالات پلیمری است که در اغلب کشور ها برای تولید الیاف پلی استر(70 درصد) رزین بطری (22 درصد) فیلم (6 درصد) و رزین های پلی استر مهندسی (2 درصد) به کار رفته ، ولی در ایران این پلیمر بیشتر برای ساخت انواع بطری های آشامیدنی استفاده می شود. با توجه به مقاومت بالای این بطری ها در برابر شکستگی ، دما و نفوذ گازها ، دارا بودن وزن کم و ارزان بودن قیمت نسبت به سایر مواد بسته بندی همچون شیشه و فلز ، تولید بطری های پلاستیکی از این رزین کاربرد گسترده ای پیدا کرده است. که بالتبع موجب ورود بطری های PETمصرفی به جریان زباله های شهری می گردد. بالا بودن حجم این بطری ها نسبت به وزن ، که فضای زیادی را در هنگام حمل و نقل و دفن ف به خود اختصاص می دهند و تجزیه بسیار طولانی آنه در طبیعت (حدود 300 سال) ، باعث گردیده تا مسئله بازیافت این بطری ها، بخصوص در سال های اخیر توجه همگان را به خو جلب نماید.
کاربرد ها و خواص PET
امروزهPET عمدتاً از ترکیب اتیلن گلیکول با اسید ترفتالیک با کمک گرما و کاتالیزور بدست می آید که پلیمری خطی و مقاوم در برابر حلال ها است.خواص فیزیکی و شیمیایی ویژه، PETمانند استحکام مکانیکی بالا استحکام اتصالات ، شفافیت ، وزن سبک ، بی خطر بودن آن از نظر سمیت و نفوذ ناپذیری در برابرco 2 سبب شده است که به طور گسترده ای در ساخت فیلمهای عکاسی ، بطری های نوشیدنی ، و الیاف به کار رود . همچنین در تهیه الیاف پیوسته BCF و نخ صنعتی و Staple ، POY منسوجات و پوشاک کاربرد دارد . به علت اثر نداشتن PET در مزه و پایداری در برابر گرما به عنوان بسته بندی مواد غذایی نیز استفاده می شود